439 research outputs found

    Numerical Investigation of Optimal Hydrodynamic Performance by Changing the Orifice Ratio and Relative Opening of a Land-Fixed Rectangular-based OWC

    Get PDF
    The energy that can be extracted from the ocean is inexhaustible. An oscillating water column (OWC) is a wave energy converter that extracts this energy. A numerical investigation has been conducted by altering relative opening (α) and orifice ratio (τ) to assess the maximal energy of a land-fixed rectangular-based OWC model in a nonlinear wave field. The power of OWC has also been evaluated by the wave steepness (H/L) alteration. The numeric analysis has been imposed to obtain the optimal power using Fluent software in a three-dimensional tank. Validation of the present numeric model’s result correlates with the printed empirical data. The Finite Volume Method (FVM) solves RANS equations, and the relevant waves are generated at the inlet of the numerical tank by the inlet velocity approach. The efficiency (η) increases with relative openings (α) increase. The efficiency (η) decreases with wave steepness (H/L) increase. The η reaches the optimum shown in the study at H/L = 0.02 and τ = 1.03% for entire values of α. The excellent energy of around 71.3% is attained at α =75% and H/L = 0.02. This study is a highly relevant source of information that finds the optimal efficiency of a land-fixed rectangular base OWC and gives prior knowledge of the performance of OWC before the real-life experiment

    Disfluency in dialogue:an intentional signal from the speaker?

    Get PDF
    Disfluency is a characteristic feature of spontaneous human speech, commonly seen as a consequence of problems with production. However, the question remains open as to why speakers are disfluent: Is it a mechanical by-product of planning difficulty, or do speakers use disfluency in dialogue to manage listeners' expectations? To address this question, we present two experiments investigating the production of disfluency in monologue and dialogue situations. Dialogue affected the linguistic choices made by participants, who aligned on referring expressions by choosing less frequent names for ambiguous images where those names had previously been mentioned. However, participants were no more disfluent in dialogue than in monologue situations, and the distribution of types of disfluency used remained constant. Our evidence rules out at least a straightforward interpretation of the view that disfluencies are an intentional signal in dialogue. © 2012 Psychonomic Society, Inc

    Direct observations of austenite, bainite, and martensite formation during arc welding of 1045 steel using time-resolved X-ray diffraction - Phase transformations were tracked in real time using a synchrotron accelerator

    Get PDF
    ABSTRACT. In-situ time-resolved X-ray diffraction (TRXRD) experiments were performed during stationary gas tungsten arc (GTA) welding of AISI 1045 C-Mn steel. These real-time synchrotron-based experiments tracked phase transformations in the heat-affected zone of the weld under rapid heating and cooling conditions. The diffraction patterns were recorded at 100 ms intervals, and were later analyzed using diffraction peak profile analysis to determine the relative fraction of ferrite (tx) and austenite (y) phases in each diffraction pattern. Lattice parameters and diffraction peak widths were also measured throughout the heating and cooling cycle of the weld, providing additional information about the phases that were formed. The experimental results were coupled with temperatures calculated by a thermo-fluids weld model, allowing the transformation kinetics of the ct~, phase transformation to be evaluated. During heating, complete austenitization was observed in the heat-affected zone of the weld, and the kinetics of the ct~'/phase transformation were modeled using a Johnson-Mehl-Avrami (JMA) approach. The results from the 1045 steel weld were compared to those of a 1005 low-carbon steel from a previous study. Differences in austenitization rates of the two steels were attributed to differences in the base metal microstructures, particularly the relative amounts of pearlite and the extent of the allotriomorphic ferrite phase. During weld cooling, the austenite transformed to a mixture of bainite and martensite. In situ diffraction was able to distinguish between these two nonequilib-J. IV.. ELMER and T. A. PALMER rium phases based on differences in their lattice parameters, diffraction peak widths, and their transformation rates, resulting in the first real-time X-ray diffraction observations of bainite and martensite formation made during welding

    Small intestinal mucosal cells in piglets fed with probiotic and zinc: a qualitative and quantitative microanatomical study

    Get PDF
    Background: Probiotics and zinc are commonly used and beneficial in pig production. This work aimed to assess the effects of probiotic and zinc on the mucosal cells of the small intestine in respect to digestive capacity and immunity in pre- and post-weaned piglets.Materials and methods: Eighteen Large White Yorkshire piglets were divided equally into control and treatment groups. The piglets were maintained in standard management conditions and were weaned at 28 days of age. The treatment group of piglets fed a mixture of probiotics orally at 1.25 × 109 CFU/day and zinc at 2000 ppm/day from birth to 10 days of age. At three different age-groups viz. day 20 (pre-weaning) and, day 30 and day 60 (post-weaning), the animals were sacrificed. For histomorphology, the tissue samples were processed and stained with Mayer’s haematoxylin and eosin for routine study, combined periodic acid-Schiff-Alcian blue for mucopolysaccharides and Masson-Hamperl argentaffin technique for argentaffin cells. The stained slides were observed under the microscope. The samples were processed as per the standard procedure for scanning and transmission electron microscopy. The statistical analysis of the data using the appropriate statistical tests was also conducted.Results: The mucosal epithelium of villi and crypts were lined by enterocytes, goblet cells, argentaffin cells, microfold (M-cell) cells, tuft cells and intraepithelial lymphocytes. The multipotent stem cells were located at the crypt base. The length of the enterocyte microvilli was significantly longer (p < 0.05) in the treatment group of piglets. The number of different types of goblet cells and argentaffin cells was more in treated piglets irrespective of segments of intestine and age. The intraepithelial lymphocytes were located in apical, nuclear and basal positions in the lining epithelium of both villus tip and base with their significant increase in the treatment group of piglets. The transmission electron microscopy revealed the frequent occurrence of tuft cells in the lining mucosa of the small intestine in treated piglets.Conclusions: Dietary supplementation of probiotic and zinc induced the number of different mucosal cells of villi and crypts in the small intestine that might suggest the greater absorptive capacity of nutrients and effective immunity in critical pre and post-weaned piglets

    Associations Between Multidrug Resistance, Plasmid Content, and Virulence Potential Among Extraintestinal Pathogenic and Commensal Escherichia coli from Humans and Poultry

    Get PDF
    The emergence of plasmid-mediated multidrug resistance (MDR) among enteric bacteria presents a serious challenge to the treatment of bacterial infections in humans and animals. Recent studies suggest that avianEscherichia coli commonly possess the ability to resist multiple antimicrobial agents, and might serve as reservoirs of MDR for human extraintestinal pathogenic Escherichia coli (ExPEC) and commensal E. coli populations. We determined antimicrobial susceptibility profiles for 2202 human and avian E. coli isolates, then sought for associations among resistance profile, plasmid content, virulence factor profile, and phylogenetic group. Avian-source isolates harbored greater proportions of MDR than their human counterparts, and avian ExPEC had higher proportions of MDR than did avian commensal E. coli. MDR was significantly associated with possession of the IncA/C, IncP1-α, IncF, and IncI1 plasmid types. Overall, inferred virulence potential did not correlate with drug susceptibility phenotype. However, certain virulence genes were positively associated with MDR, including ireA,ibeA, fyuA, cvaC, iss, iutA, iha, and afa. According to the total dataset, isolates segregated significantly according to host species and clinical status, thus suggesting that avian and human ExPEC and commensal E. coli represent four distinct populations with limited overlap. These findings suggest that in extraintestinal E. coli, MDR is most commonly associated with plasmids, and that these plasmids are frequently found among avian-source E. coli from poultry production systems

    Bacteriophages to control Shiga toxin-producing E. coli safety and regulatory challenges

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) are usually found on food products due to contamination from the fecal origin, as their main environmental reservoir is considered to be the gut of ruminants. While this pathogen is far from the incidence of other well-known foodborne bacteria, the severity of STEC infections in humans has triggered global concerns as far as its incidence and control are concerned. Major control strategies for foodborne pathogens in food-related settings usually involve traditional sterilization/disinfection techniques. However, there is an increasing need for the development of further strategies to enhance the antimicrobial outcome, either on food-contact surfaces or directly in food matrices. Phages are considered to be a good alternative to control foodborne pathogens, with some phage-based products already cleared by the Food and Drug Administration (FDA) to be used in the food industry. In European countries, phage-based food decontaminants have already been used. Nevertheless, its broad use in the European Union is not yet possible due to the lack of specific guidelines for the approval of these products. Furthermore, some safety concerns remain to be addressed so that the regulatory requirements can be met. In this review, we present an overview of the main virulence factors of STEC and introduce phages as promising biocontrol agents for STEC control. We further present the regulatory constraints on the approval of phages for food applications and discuss safety concerns that are still impairing their use.The authors thank the Portuguese Foundation for Scienceand Technology (FCT) through the strategic funding of UID/BIO/04469/2019 unit, and the project PhageSTEC [PTDC/CVT-CVT/29628/2017], under the scope of COMPETE 2020 [POCI-01-0145-FEDER-029628]. The author GP acknowledges theFCT grant [SFRH/BD/117365/2016].info:eu-repo/semantics/publishedVersio

    Bacteria establish an aqueous living space in plants crucial for virulence

    Get PDF
    High humidity has a strong influence on the development of numerous diseases affecting the above-ground parts of plants (the phyllosphere) in crop fields and natural ecosystems, but the molecular basis of this humidity effect is not understood. Previous studies have emphasized immune suppression as a key step in bacterial pathogenesis. Here we show that humidity-dependent, pathogen-driven establishment of an aqueous intercellular space (apoplast) is another important step in bacterial infection of the phyllosphere. Bacterial effectors, such as Pseudomonas syringae HopM1, induce establishment of the aqueous apoplast and are sufficient to transform non-pathogenic P. syringae strains into virulent pathogens in immunodeficient Arabidopsis thaliana under high humidity. Arabidopsis quadruple mutants simultaneously defective in a host target (AtMIN7) of HopM1 and in pattern-triggered immunity could not only be used to reconstitute the basic features of bacterial infection, but also exhibited humidity-dependent dyshomeostasis of the endophytic commensal bacterial community in the phyllosphere. These results highlight a new conceptual framework for understanding diverse phyllosphere–bacterial interactions

    Characterizing the pathotype of neonatal meningitis causing <i>Escherichia coli</i> (NMEC)

    Get PDF
    Background Neonatal meningitis-causing Escherichia coli (NMEC) is the predominant Gram-negative bacterial pathogen associated with meningitis in newborn infants. High levels of heterogeneity and diversity have been observed in the repertoire of virulence traits and other characteristics among strains of NMEC making it difficult to define the NMEC pathotype. The objective of the present study was to identify genotypic and phenotypic characteristics of NMEC that can be used to distinguish them from commensal E. coli. Methods A total of 53 isolates of NMEC obtained from neonates with meningitis and 48 isolates of fecal E. coli obtained from healthy individuals (HFEC) were comparatively evaluated using five phenotypic (serotyping, serum bactericidal assay, biofilm assay, antimicorbial susceptibility testing, and in vitro cell invasion assay) and three genotypic (phylogrouping, virulence genotyping, and pulsed-field gel electrophoresis) methods. Results A majority (67.92 %) of NMEC belonged to B2 phylogenetic group whereas 59 % of HFEC belonged to groups A and D. Serotyping revealed that the most common O and H types present in NMEC tested were O1 (15 %), O8 (11.3 %), O18 (13.2 %), and H7 (25.3 %). In contrast, none of the HFEC tested belonged to O1 or O18 serogroups. The most common serogroup identified in HFEC was O8 (6.25 %). The virulence genotyping reflected that more than 70 % of NMEC carried kpsII, K1, neuC, iucC, sitA, and vat genes with only less than 27 % of HFEC possessing these genes. All NMEC and 79 % of HFEC tested were able to invade human cerebral microvascular endothelial cells. No statistically significant difference was observed in the serum resistance phenotype between NMEC and HFEC. The NMEC strains demonstrated a greater ability to form biofilms in Luria Bertani broth medium than did HFEC (79.2 % vs 39.9 %). Conclusion The results of our study demonstrated that virulence genotyping and phylogrouping may assist in defining the potential NMEC pathotype

    Viral Kinetics Suggests a Reconciliation of the Disparate Observations of the Modulation of Claudin-1 Expression on Cells Exposed to Hepatitis C Virus

    Get PDF
    The tight junction protein claudin-1 (CLDN1) is necessary for hepatitis C virus (HCV) entry into target cells. Recent studies have made disparate observations of the modulation of the expression of CLDN1 on cells following infection by HCV. In one study, the mean CLDN1 expression on cells exposed to HCV declined, whereas in another study HCV infected cells showed increased CLDN1 expression compared to uninfected cells. Consequently, the role of HCV in modulating CLDN1 expression, and hence the frequency of cellular superinfection, remains unclear. Here, we present a possible reconciliation of these disparate observations. We hypothesized that viral kinetics and not necessarily HCV-induced receptor modulation underlies these disparate observations. To test this hypothesis, we constructed a mathematical model of viral kinetics in vitro that mimicked the above experiments. Model predictions provided good fits to the observed evolution of the distribution of CLDN1 expression on cells following exposure to HCV. Cells with higher CLDN1 expression were preferentially infected and outgrown by cells with lower CLDN1 expression, resulting in a decline of the mean CLDN1 expression with time. At the same time, because the susceptibility of cells to infection increased with CLDN1 expression, infected cells tended to have higher CLDN1 expression on average than uninfected cells. Our study thus presents an explanation of the disparate observations of CLDN1 expression following HCV infection and points to the importance of considering viral kinetics in future studies of receptor expression on cells exposed to HCV
    corecore